WEEK 13: Cont(B) an + Cont(A) on we didn't show that f is surjective. A ⊆ B open Subring Example: (not true without analytic) cont. valuations of Zp (x> dan 4 an extend to Qp (x> Proof of f surjective: Let 1.16 Contlatan and Let Supplil=p=A. 1.1 analytic => p 7 I where I is an ideal of definition => p 2 R° as $I \subseteq A^{\infty}$. Let $S \in A^{\infty} \setminus P$. Notice that for any element $b \in B$, $\exists n > 0 S + I^n \cdot b \subseteq A$. As $S \in A^{\infty} \ni j S + S^j \in I^n$ therefore $S^j \cdot b \in A$. Therefore, $A_{p} \stackrel{\longrightarrow}{\longrightarrow} B$ and $A_S \cong B_S$ let $g = B \cap p.B_S$. Note that $q \cap B = p$. Consider the following diagram: $\begin{array}{ccc}
A & \longrightarrow & As \\
\downarrow & B & \longrightarrow & Bs \\
A/\rho & \longrightarrow & (A/\rho)_{SE} \\
B/q & \longrightarrow & (B/q)_{S}
\end{array}$ using the isomorphism Frac(Alp) = Fruc(B/q) we con'extend 1.1 to FractAlp) FractB/q) Recall: (A,A+) is perfectoid affinoid if · Offinoid Ao bounded A complete & iniform ⇒ A°=A0 can be taken. • 3 to ∈A pseudo-uniformizer [W∈A°°, TU∈A×] sun that
(i) TUP|p (ii) A°/W => A°/TUP is an isomorphism.

Example: $\overline{\mathbb{Z}_p \mathbb{Z}_p^{1/p^m}}$ and the sum $\overline{\mathbb{Z}_p \mathbb{Z}_p^{1/p^m}}, x^{1/p^m}$ and the same with $\overline{\mathbb{Q}}$ with $\overline{\mathbb{Q}}$ to get (K_1K^+) by the have $\overline{\mathbb{Z}_p \mathbb{Z}_p^{1/p^m}}, x^{1/p^m}$ by $\overline{\mathbb{Z}_p \mathbb{Z}_p^{1/p^m}}$ by $\overline{\mathbb{Z}_$

Proposition: A Tate ring, $A_0 \subseteq A$ ring of definition, \overline{w} pseudo-unif.
(1) If $\overline{w} \in A_0 \Rightarrow \overline{w}$. At is an ideal of def.

(2) A Howsdorff + uniform \Rightarrow A is reduced.

(3) If we Ao then A = Ao[w].

Proof: (1) w. Ao open as we Ax. Fix DeU open => FV >0 open: V. Ao ⊆ U as to top. nilpotent 3n>0 st to rev > to r. Ao ∈ U.

(2) a nilpotent and fix noo. It is enough to show that a EW? A°. This is equivalent to \overline{w}^{-n} . $a \in A^o$ but this follows as a is nilpotent.

(3) weA∞, a∈A >> ∃n>o st wn.a∈Ao.

Proposition: A Tate, to pseudo-unif, topp in A° then
(1) A/w - A/wp inj.

(2) TFAE (a) A°/PA° + A°/PA° is surj. (b) A°/WA° -> A°/WPA° is surj. Proof: (1) aeA° st aPEWP.A° => (a. w-1)PEA° => a. w-1EA° => aEWA° (2) Notice that (a) ⇒(b) follows from wP(p. (b) ⇒ (a): Let b∈A° we went bo = b^P mod p we get b by approximation. By (b) bo = $a_0^P + \overline{w}P$. $b_1 \in A_0$. repeat $w/b_1 \dots \rightarrow b_0 = \sum_{i > 0} a_i P \cdot \overline{w}^i = (\sum_{i > 0} a_i w_i)^P \mod p$ Proposition: (A, A+) perf. affinoid, WEAP ps. unif. W/p $\lim_{x \to x^p} A^o = \lim_{x \to x^p} A^o / \overline{\omega} A^o$. We denote $(A^o)^b = \lim_{x \to x^p} A^o / \overline{\omega} A^o$ multiplicative ning.

not ning.

Proof: Need on invexe.

([ai]) i>0 \(-\frac{1}{1m} \) A^\sigma^\circ ai = \(\ai_1 \) mod \(\overline{w} \) Claim: $a_{i+1}^{pit1} = a_i^{pi} \mod \overline{w}^{i+1}$ Proof: $a_{i+1}^P = a_i$ mod $w \Rightarrow a_{i+1}^P = a_i + wc$, $(a_i + wc)^P = a_i^P + \sum_{j > 0} (p_j) w_j c_j a_i^{-j}$ and repeating this we obtain the claim. ([ai])_{i>0} \longrightarrow (lim_{j>0} a_j^{pj} , lim_{j>0} a_{j+1}^{pj} , \longrightarrow is the inverse.

Moreover we have a map (A0)b #, A0 given by ([ai]_{i>0}) \longleftrightarrow lim_{j>0} a_j^{pj} . \square Addition on $\lim_{x\to x^p} A^o: (a_i)_{i>0} + (b_i)_{i>0} = (\lim_{j\to\infty} (a_j+b_j)^{p_j}, \lim_{j\to\infty} (a_{j+1}+b_{j+1})^{p_j},$ on extend this to A.

One can show that (Ab, (A+1b) is perfect affinoid of that p.